Wednesday 17 May 2023

— Day 1 —

1. In a triangle ABC with $AB < AC$, D is a point on segment AC such that $BD = CD$. A line parallel to BD meets segment BC at E and line AB at F. Point G is the intersection of AE and BD.
 Show that $\angle BCG = \angle BCF$.

2. Find all positive integers m and n with no common divisor greater than 1 such that $m^3 + n^3$ divides $m^2 + 20mn + n^2$.

3. Consider a sequence of real numbers defined by:
 \[
 x_1 = c \\
 x_{n+1} = cx_n + \sqrt{c^2 - 1} \sqrt{x_n^2 - 1} \quad \text{for all } n \geq 1.
 \]
 Show that if c is a positive integer, then x_n is an integer for all $n \geq 1$.

Time: 4 hours and 30 minutes
Each problem is worth 7 points
4. Manzi has n stamps and an album with 10 pages. He distributes the n stamps in the album such that each page has a distinct number of stamps. He finds that, no matter how he does this, there is always a set of 4 pages such that the total number of stamps in these 4 pages, is at least $n/2$. Determine the maximum possible value of n.

5. Let a and b be real numbers with $a \neq 0$. Let

$$P(x) = ax^4 - 4ax^3 + (5a + b)x^2 - 4bx + b.$$

Show that all roots of $P(x)$ are real and positive if and only if $a = b$.

6. Let ABC be an acute triangle with $AB < AC$. Let D, E, and F be the feet of the perpendiculars from A, B, and C to the opposite sides, respectively. Let P be the foot of the perpendicular from F to line DE. Line FP and the circumcircle of triangle BDF meet again at Q. Show that $\angle PBQ = \angle PAD$.

Time: 4 hours and 30 minutes
Each problem is worth 7 points