

22nd edition of the Pan African Mathematics Olympiad Abuja: 23 June – 2 July, 2013

First Day: 28 June 2013

Duration : 4 h 30

Exercise 1

A positive integer n is such that n(n + 2013) is a perfect square.

- a) Show that *n* cannot be prime.
- b) Find a value of n such that n(n + 2013) is a perfect square.

Exercise 2

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x)f(y) + f(x + y) = xy for all real numbers x and y.

Exercise 3

Let *ABCDEF* be a convex hexagon with $\angle A = \angle D$ and $\angle B = \angle E$. Let *K* and *L* be the midpoints of the sides *AB* and *DE* respectively.

Prove that the sum of the areas of triangles *FAK*, *KCB* and *CFL* is equal to half of the area of the hexagon if and only if

$$\frac{BC}{CD} = \frac{EF}{FA}$$

22nd edition of the Pan African Mathematics Olympiad Abuja: 23 June – 2 July, 2013

Second Day: 29 June 2013

Duration : 4 h 30

Exercise 4

Let ABCD be a convex quadrilateral with AB parallel to CD. Let P and Q be the midpoints of AC and BD, respectively.

Prove that if $\angle ABP = \angle CBD$, then $\angle BCQ = \angle ACD$.

Exercise 5

The cells of an $n \times n$ board with $n \ge 5$ are coloured black or white so that no three adjacent squares in a row, column or diagonal are the same colour. Show that for any 3×3 square within the board, two of its corner squares are coloured black and two are coloured white.

Exercise 6

Let *x*, *y*, and *z* be real numbers such that x < y < z < 6. Solve the system of inequalities:

$$\begin{cases} \frac{1}{y-x} + \frac{1}{z-y} \le 2\\ \frac{1}{6-z} + 2 \le x \end{cases}$$