Problem 1: Let \(n \) be an integer greater than 3. A square of side length \(n \) is divided by lines parallel to each side into \(n^2 \) squares of length 1. Find the number of convex trapezoids which have vertices among the vertices of the \(n^2 \) squares of side length 1, have side lengths less than or equal to 3, and have area equal to 2. Note: parallelograms are trapezoids.

Problem 2: Let \(C \) be a circle, \(P \) be a point outside it, and \(A \) and \(B \) be the intersection points between \(C \) and the tangents from \(P \) onto \(C \). Let \(K \) be a point on the line \(AB \), distinct from \(A \) and \(B \) and let \(T \) be the second intersection point of \(C \) and the circle passing through \(P \), \(B \) and \(K \). Also, let \(P' \) be the reflection of \(P \) in point \(A \). Show that \(\angle PBT = \angle P'KA \).

Problem 3: Let \(a_0, a_1, \ldots \) and \(p_0, p_1, \ldots \) be infinite sequences of positive integers such that:

- \(a_0 \geq 2 \),
- \(p_n \) is the smallest prime divisor of \(a_n \) for each integer \(n \geq 0 \), and
- \(a_{n+1} = a_n + \frac{a_n}{p_n} \) for each integer \(n \geq 0 \).

Prove that there is an integer \(N \) such that \(a_{n+3} = 3a_n \) for \(n > N \).
Problem 4: Find all integers m and n such that

\[
\frac{m^2 + n}{n^2 - m} \quad \text{and} \quad \frac{n^2 + m}{m^2 - n}
\]

are both integers.

Problem 5: Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

\[
(f(x) + y)(x + f(y)) = f(x^2) + f(y^2) + 2f(xy).
\]

Problem 6: Let $ABCD$ be a trapezoid, not a parallelogram, with $AD \parallel BC$. Let the diagonals BD and AC intersect at a point O. The circumscribed circles to triangles AOB et DOC meet again at the second point S.

Prove that the circumscribed circles to triangles ASD and BSC are tangent.